home *** CD-ROM | disk | FTP | other *** search
- >Symmetric equation. (substitution)
- 3x^4≤-2x^3≤+x^2≤-2x+3=0
- MYSZEK 2xy
- 145795
- #
- ò
- 21
- We solve the symmetric equation.
-
- Steps 1-4 involve bringing the equation to a form in which we can see how a
- substitution, typical for this type of equation, can be used. To do this we
- have to divide by a variable, but because x=0 is not a root of the equation
- we do not have to open a new case.
-
- After substitution we obtain a quadratic equation, step 5.
- In steps 5-7 we solve this equation.
-
- Step 8. We go back to the old variables and break down the problem into
- cases (SHIFT+y). We solve each case separately.
-
- Case 1, step 13.
- We wish to solve a quadratic equation. To do this we must find delta.
- Notice that we have used a subscript with the delta symbol, as plain delta
- with no subscript has already been used.
- There is no solution because delta is negative.
-
- The remainder of the solution of Case 2 is left to the user.
-
-
- ê
- "
- q¨x+/Ø1±≤x±Éä
- 9
- 4
- Ä™¨4+4*3*5ä
- 11
- 8
- Ä™_1ب1-4ä
- 7
- 11
- Ä™_2ب/Ø25±≤9±-4ä
- 9
- 16
- ã
- 0
- 0
- 0
- ÜÑ3x^4≤-2x^3≤+x^2≤-2x+3=0Éä
- 15
- 4
- ã
- 0
- 0
- 0
- ø2Éä
- 3
- 3
- ã
- 0
- 0
- 0
- ø3(x^2≤+/Ø1±≤x^2≤±)-2(x+/Ø1±≤x±)+1=0Éä
- 23
- 5
- ã
- 0
- 0
- 0
- ø3(x+/Ø1±≤x±)^2≤-6-2(x+/Ø1±≤x±)+1=0Éä
- 13
- 4
- ã
- 0
- 0
- 0
- ø3(x+/Ø1±≤x±)^2≤-2(x+/Ø1±≤x±)-5=0Éä
- 22
- 4
- ã
- 0
- 0
- 0
- øq¨x+/Ø1±≤x±ä
- 8
- 5
- Ä3q^2≤-2q-5=0ä
- 8
- 9
- Ä™¨4+4*3*5Éä
- 11
- 12
- ã
- 0
- 0
- 0
- ø3q^2≤-2q-5=0ä
- 8
- 4
- ÄP∞^≤±™±=8Éä
- 8
- 8
- ã
- 0
- 0
- 0
- ø3q^2≤-2q-5=0ä
- 8
- 4
- ÄP∞^≤±™±=8ä
- 8
- 8
- Äq=/Ø2-8±≤6±⁄q=/Ø2+8±≤6±Éä
- 14
- 13
- ã
- 0
- 0
- 0
- øx+/Ø1±≤x±=/Ø2-8±≤6±⁄x+/Ø1±≤x±=/Ø2+8±≤6±Éä
- 19
- 4
- ã
- 0
- 0
- 0
- øx+/Ø1±≤x±=/Ø2-8±≤6±Éä
- 13
- 4
- ã
- 0
- 0
- 0
- Üx+/Ø1±≤x±=/Ø2+8±≤6±Éä
- 2
- 4
- ã
- 0
- 0
- 0
- øx+/Ø1±≤x±=-1Éä
- 10
- 4
- ã
- 0
- 0
- 0
- øx^2≤+1=-xÉä
- 6
- 4
- ã
- 0
- 0
- 0
- øx^2≤+x+1=0Éä
- 10
- 4
- ã
- 0
- 0
- 0
- øx^2≤+x+1=0ä
- 10
- 4
- Ä™_1ب1-4Éä
- 8
- 7
- ã
- 0
- 0
- 0
- øx^2≤+x+1=0Éä
- 10
- 4
- ã
- 0
- 0
- 0
- ñàçx+/Ø1±≤x±=/Ø5±≤3±Éä
- 9
- 5
- ã
- 0
- 0
- 0
- øx^2≤+1=/Ø5±≤3±xÉä
- 9
- 4
- ã
- 0
- 0
- 0
- øx^2≤-/Ø5±≤3±x+1=0ä
- 11
- 4
- Ä™_2ب/Ø25±≤9±-4Éä
- 9
- 9
- ã
- 0
- 0
- 0
- øx^2≤-/Ø5±≤3±x+1=0Éä
- 11
- 4
- ã
- 0
- 0
- 0
- åçé
- 0
- 0
- 0
- 18
- 0
- 0
- 0
- 0
- è
-